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Abstract

Deployed models often stream high-impact outputs and actively train on new
observed data. Many fairness algorithms provide extremely strong guarantees
about statistical parity on protected groups in the batchwise setting or in the
limit of training data. We are therefore motivated to extend these results to the
online setting where we can impose safety conditions on the model’s behavior
throughout the trajectory of its deployment. We propose the ε-tolerant online
debiaser as a rejection-sampling framework with a strong theoretical guarantee
of statistical parity; we conclude with a demonstration of its effectiveness on
minimizing bias from recidivism predictions on the ProPublica dataset.

1 Introduction

Suppose that one lives in a city where an
AI sentences criminals. It would be of little
comfort to understand that this AI’s behavior
is asymptotically fair or that some Chernoff
bound will be small by the year 2080; one
would vastly prefer a guarantee that the AI
is fair in the current moment.

We are therefore interested in imposing a
safety criterion over a model that holds true
in the online setting; namely, that the algo-
rithm makes unbiased decisions throughout
the duration of training, not just in the batch-
wise setting or in the limit of training data.

Due to the highly fragmented nature of
fairness frameworks from the Fairness, Ac-
countability, and Transparency (FAT*) com-
munity, we will present our work in an un-
orthodox order. We will begin with the re-
cidivism dataset and some exploratory obser-
vations on the bias of naive models. We will
then motivate a selective review of relevant
fairness frameworks and theoretical guaran-
tees. Finally, we will present the ε-tolerant
debiaser, its safety and liveness guarantees,
and its emperical behavior on the recidivism
dataset.

1.1 The Recidivism Dataset

We will use the publicly available ProPublica
Compas Analysis dataset on criminal history,
jail and prison times, and demographics for
defendants in Broward county, Florida. The
learning problem is to predict the probabil-
ity of recidivism (committing another crime)
within two years.

There is a clear a priori concern for mod-
els trained on this dataset to be racially bi-
ased; Propublica’s work in open-sourcing this
dataset revealed that COMPAS, a privately
developed black-box algorithm used by court
systems in multiple states [9], was not only
unable to outperform linear regression [16]
but also disproportionately erred on African-
Americans. Black defendants who do not
recidivate were almost twice as likely to be
classified by COMPAS as a higher risk com-
pared to white defendants (45 percent vs. 23
percent) [1].

For details on the bias of the COMPAS
algorithm, our munging methodology and
dataset schema, see Appendices 7.1, 7.2, and
7.3, respectively.

https://github.com/propublica/compas-analysis/
https://github.com/propublica/compas-analysis/
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Figure 1: A visualization of the distinction between low error and fairness. The x-axis represents the epoch
number; validation metrics were measured at the end of each epoch. The y-axis on the right represents
the absolute difference in accuracy between the highest accuracy over any rate and the lowest accuracy
over any rate.

We trained a shallow neural network on
the recidivism dataset without any notions of
fairness. As depicted on the right of Figure 1,
though we immediately outperformed COM-
PAS’ 65% accuracy[1], we observe on the left
of Figure 1 that our model rocketed to extraor-
dinary levels of bias during its early training.
In fact, the worst classwise accuracy differ-
ence jumps to a perfect 1.0 between epochs
30 and 80, which indicates that our model
had 100% error on one race and 0% error on
another race for 50 consecutive epochs! And
yet in the corresponding validation accuracy
curve, we see only a well-behaved, smooth in-
crease in accuracy. We attribute this behavior
to two factors:

• Certain subsets of the data will have nat-
urally lower error rates (e.g. more pre-
dictive covariates, lower real-life mea-
surement error).

• Certain subsets of the data are faster to
converge (e.g. curve-fitting over a very
small, homogeneous distribution occurs
much faster under stochastic gradient
descent than the same process over a
large, diverse one).

We are therefore motivated to avoid

spikes of unfairness levels throughout train-
ing; we would prefer that our models im-
prove on each protected class of individuals
at a similar, steady rate.

1.2 Fairness Definitions

Figure 2: Verma et al’s non-comprehensive list of
broad fairness definitions. A check mark
on the right denotes that a positive result
exists on the German Credit Dataset [14].
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Dozens of fairness definitions have been pro-
posed because the common-sense formaliza-
tion is situational [14]. We will focus on sta-
tistical measures since those definitions align
with the observed behavior in Figure 1.

Fairness over statistical measures is
broadly defined by a requirement that some
summary statistic must be statistically in-
distinguishable between two distributions of
data. We further divide this set into two cate-
gories: outcome parity and error parity.

1.2.1 Outcome parity

In classification-based statistical parity (also
known as group fairness, equal acceptance
rate [17], and benchmarking), we require that
the probability of being assigned to the posi-
tive class must be equal across values of the
protected class. This condition is levied on
the full joint distribution; in the case of recidi-
vism, a model fails this fairness criterion if
the aggregate predicted rate of recidivism in
African-Americans and Caucasians are not
statistically equal. Simoiu et al note that
this assumption will fail whenever the true
rates actually differ in the marginal distribu-
tions along the protected classes and name
this condition infra-marginality [13]. As such,
Dwork et al apply this framework only in
cases where there is potential inherent bene-
fit to outcome equality (e.g. affirmative action
in diversifying college admissions) [5].

Conditional statistical parity subverts the
problem of infra-marginality by making a
more qualified criterion that the model’s
probability of assigning the positive class is
identical across protected class values condi-
tional on some set of legitimate covariates; e.g.
in the recidivism, models may need to pre-
dict that African-Americans and Caucasians
recidivate at the same rate conditional on in-
come (in fact, the same recidivism dataset mo-
tivated Corbett-Davies et al towards this def-
inition) [4]. The authors find that enforcing

conditional statistical parity is more tractable
than outcome parity. They also find that
enforcing this condition increases the false
negative rate and risks community safety by
releasing dangerous individuals, and they
name this phenomenon the “cost of fairness.”

1.2.2 Error Parity

Error parity is a much simpler idea: some
measure of validation error must be the same
across classes. Predictive equality requires
that the false positive rates be statistically
equal [4] [3]; equal opportunity requires that
the false negative rates be statistically equal
[7]. Requiring both of these conditions is
known as equalized odds or disparate mis-
treatment [10]. We note that since these def-
initions take the distributions of data labels
into account, it’s clear that there exist high-
performing models that satisfy these defini-
tions (whether these models are easily learn-
able is a separate question).

1.3 Fairness Guarantees

The FAT* community has wonderful guaran-
tees on fair behavior under many settings and
definitions of fairness. We wish to highlight
two kinds of guarantees that motivate our
work: data-driven and online guarantees.

1.3.1 Data-driven guarantees

For example, Zhang et al define a risk differ-
ence as the difference in positive classification
rate between two distributions; they impose
fairness as risk difference constraint on a con-
vex relaxation of the non-convex model opti-
mization problem:

min
h∈H

Lφ(h)

subject to RDκ(h) ≤ c1,
RDδ(h) ≤ c2
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where Lφ represents a convex surrogate for
the 0-1 empirical loss function, h ∈ H is a con-
tinuous model, and κ, δ are convex, concave
surrogates for the risk difference function (re-
spectively). The authors prove that this relax-
ation of this problem is itself a convex opti-
mization problem, then solve the relaxation
with Disciplined Convex-Concave Program-
ming. [15] However, note that because this
methodology uses convex optimization, it’s
not obvious how to apply this methodology
to the online setting.

1.3.2 Online guarantees

Bechavod et al find a metric-free online fair-
ness framework that can force a model to
respect any form of fairness criterion. The
input to this framework is an auditor that can
observe a model’s decision over two exam-
ples and decide whether fairness is violated;
the form of fairness is implicit in the auditor’s
outputs. This a no-regret algorithm, which
subverts the “cost of fairness” [2].

A similar finding from Gillen et al guaran-
tees online fairness by learning an unknown
similarity metric from weak feedback; the
intuition is that this mimics “regulator who
knows unfairness when he sees it but never-
theless cannot enunciate a quantitative fair-
ness metric over individuals” [6].

We note with great intentionality that all
data-driven fairness guarantees at the time
of writing are either asymptotic or batchwise,
and all online guarantees are auditor-driven
(i.e. the fairness criterion is not evaluated
from data, but rather from an oracle that out-
puts fairness violations).

1.4 Research Question

With the language and machinery of the FAT*
body of literature at hand, we formulate
our goal on the recidivism dataset: to cre-
ate a data-driven debiasing algorithm that

will learn a model in the online setting that
needs neither a data-subverting oracle nor
the complete data distribution. We require
the following two conditions:

1. Safety: the model will never enter a
state of disparate mistreatment; the dif-
ference in accuracy rate in predicting re-
cidivism between ethnicities must never
exceed a pre-specified threshold.

2. Liveness: the model must never be
frozen into inaction by its safety crite-
rion. A very strong fairness condition
(such as group fairness) could conceiv-
ably be too strong as to prevent learning
or improvement.

With these qualitative goals in mind, we
will now notate and specify our algorithm
design. We will define and prove the safety
and liveness conditions formally in Section 3.

1.5 Notation

Definition 1.1. Let the data distribution be
a mapping D : {(~xi, yi)∀i} → R. We no-
tate the distributions over protected class
values C = {c1, c2, ...} as Dc1 ,Dc2 .... In this
paper, these will refer to the subset data distri-
butions over Caucasians, African-Americans,
etc.

Definition 1.2. A model f is ε-biased over
a protected class C on loss function L if
(maxci∈C L( f , ci))−

(
mincj∈C L( f , cj)

)
> ε.

Definition 1.3. An ε-tolerant online debi-
aser is a learning system that shields an on-
line model such that it is never ε-biased.

Definition 1.4. Let F be a family of models.
Let ε

Bayes
Di ,L,F = min f∈F LDi( f ) be the Bayes er-

ror for loss function L over data distribution
Di on the model family F . When F is not
specified, assume the Bayes error is inclusive
of all models.
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Figure 3: If the running model is ε-unbiased at time t and is biased for 2 timesteps thereafter, the production
model will point to the parametrization at timestep t for 3 timesteps.

2 Algorithm

Algorithm 1 ε-tolerant Debiaser

1: procedure Debiaser(Minibatch stream D, validation set V)
2: Initialize running model as neural network N
3: Initialize loss function L, optimizer A.
4: Set production model R← N
5: for minibatch (x, y) in stream D do
6: Compute gradient update g← L(N(x), y).
7: Execute an optimization step N ← A(N, g).
8: Calculate maximum classwise loss difference of N on V.
9: if N is not ε-biased then

10: R← N
return N

We will first establish some intuition, then
formalize the ε-tolerant debiaser algorithm.

We wish to obtain models within the
distribution of high-performing, ε-unbiased
models; however, it is extremely difficult
to sample from this distribution. We turn
to computational Bayesian methods for in-
spiration, where we sample from arbitrarily
complex non-standard distributions via rejec-
tion sampling. For example, the Metropolis-
Hastings algorithm uses a simple proposal
distribution g(x′ | xt) that is easy to sample
from (e.g. a Gaussian centered at the previ-
ous sample) and a rejection sampling routine
where the proposal x′ is accepted with proba-
bility α = f (x′)

f (xt)
, where f is the density of the

desired distribution. [8]

Our approach will be to use an increas-
ingly high-performing proposal distribution
of models by offering snapshots of a neural
network throughout its training process and
accepting/rejecting the model parametriza-
tion at each snapshot based on whether it is
ε-biased. As a matter of implementation, we
will train a neural network in the online set-
ting, and the “samples” we are optimizing (re-
ferred to as the “production” model) will be
pointers to the most recent parametrization
of this neural network that is not ε-biased.
We depict an example in Figure 3 and the
formal algorithm in Figure 1. Note that in
this implementation, the production model
is allowed to be ε-biased at initialization but
never again after the first reparametrization.
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3 Theoretical Behavior

We formalize the safety condition outlined in
the research goal as the following theorem.

Theorem 3.1. The production model of an ε-
tolerant online debiaser is always ε-unbiased.

We further claim this theorem is true by
the definition of the production model.

Subject to assumptions on our choice of
tolerance ε and the expressiveness of the
learner family, we claim (in informal lan-
guage) that the ε-tolerant debiaser will never
put its production model into a perpetual
frozen state. Before proving this statement,
we prove a brief lemma about the nature of
Bayes errors on partitions of distributions.

Lemma 3.2. Suppose over sample space Ω ⊂
X × Y with measure λ, we induce a finite parti-
tion Ω = Ω1 ∪Ω2 ∪ ...Ωn. Further suppose that
for each element of the partition Ωi we assign a
distribution Fi with zero support in Ω−Ωi, and
we define the distribution of the aggregate sample
space Ω to be F(ω) = ∑i

λ(Ωi)
λ(Ω)

Fi(ω).

Then any model M : X → Y that achieves
ε

Bayes
F,L must also achieve ε

Bayes
Fi ,L ∀ Fi.

Proof. Suppose for the sake of contradiction
that model M achieves ε

Bayes
F,L but fails to

achieve ε
Bayes
Fj,L for some j. We begin by ex-

panding the Bayes error as an integral with
respect to the sample space Ω.

ε
Bayes
F,L,M =

∫
ω=(x,y)∈Ω

F(ω) · L(M(x), y)dω

We note that by construction, every term
in the expansion F(ω) = ∑i

λ(Ωi)
λ(Ω)

Fi(ω) eval-
uates to zero support except for one term
because the set {Ωi∀i} is a partition. We then
collect over the partitions in the Bayes error
expansion.

ε
Bayes
F,L,M =

∫
Ω

(
∑

i

λ(Ωi)

λ(Ω)
Fi(ω)

)
· L(M(x), y)dω

(By definition of F)

=
∫

Ω

(
∑

i
ai · Fi(ω)

)
· L(M(x), y)dω

(Define ai =
λ(Ωi)
λ(Ω)

)

=
∫

Ω

(
∑

i
ai · Fi(ω)I(ω ∈ Ωi)

)
· L(M(x), y)dω

(Each ω is only in one Ωi.)

= ∑
i

(
ai

∫
Ωi

Fi(ω) · L(M(x), y)dω

)
(Addition rule)

= ∑
i

(
ai · ε

Bayes
Fi ,L

)
Now, we consider the specific loss on

model M : ∑i

(
ai · εM

Fi ,L

)
. We know that for

all i 6= j, model M cannot perform better
than ε

Bayes
Fi ,L . Therefore, for each of those n− 1

terms, the loss on model M is at least as large
as the corresponding term in the Bayes error
expansion by the definition of Bayes error.

By our contradiction assumption, we as-
sume that εM

Fj,L > ε
Bayes
Fj,L . Since each of the

terms in the n-term expansion is larger, then
the overall error on model M is larger than
the Bayes error ε

Bayes
F,L,M. This concludes the

proof by contradiction.

We now formalize our theorem as follows:

Theorem 3.3. Suppose that a sigmoid-activation
neural network f is trained by an ε-tolerant de-
biaser that is instantiated on data distribution D,
loss function L, and protected classes C. Suppose
further that:

1. f is arbitrarily wide.
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2. The parametrization at time t− 1, ft−1, is
ε-unbiased.

3. The parametrization at time t, ft, is ε-
biased.

4. ε >
(

maxi∈C ε
Bayes
Di ,L

)
−
(

mini∈C ε
Bayes
Di ,L

)
.

Then there exists some time t∗ > t for which
ft∗ is ε-unbiased.

Proof. Suppose for the sake of contradiction
that there does not exist a timestep t∗ that
allows the production model to escape its
pointer at time t− 1. Intuitively, neural net-
work f will then observe an infinite number
of data points in the data stream D.

Since f is assumed to be arbitrarily
wide and because the sigmoid activation is
bounded, we can invoke the equivalence be-
tween the family of infinite-width neural net-
works and the Gaussian process prior, where
a specific parametrization of an infinite-width
neural network is equivalent to a sampled
function from the Gaussian process. [11]
Thus, any non-parametric properties of Gaus-
sian processes must apply to f as well.

Gaussian processes are consistent estima-
tors. [12] Therefore, f will converge to Bayes
error ε

Bayes
D,L .

Since the distributions Di are a partition
generated from the protected class values C,
we apply the earlier lemma. We now have
that f will converge to the Bayes error ε

Bayes
D〉,L

for every distribution Di.
Therefore, the maximum classwise loss

error difference is:(
max
ci∈C
L( f , ci)

)
−
(

min
cj∈C
L( f , cj)

)
=

(
max
i∈C

ε
Bayes
Di ,L

)
−
(

min
i∈C

ε
Bayes
Di ,L

)
Since ε was constructed to be larger than

the RHS of the above equation, it must be

larger than the left-hand side. Since the con-
vergence limit of the consistent estimator is
strictly less than ε, there exists some time
t∗ where f achieve classwise accuracy differ-
ence strictly lower than ε. By definition, ft∗

is ε-unbiased. This concludes the proof by
contradiction.

Note that generalizing this theorem from
sufficiently large neural networks to any con-
sistent estimator is trivial.

4 Empirical Results

4.1 Removal of Racial Bias

Figure 4: The vanilla model from Figure 1 is shown
in red, and the model with the debiaser run-
ning is shown in grey. Note the grey curve
stays below its initialization bias.

Our key finding is that the ε-tolerant online
debiaser does remove the characteristic early-
training spike in bias. In addition, the debi-
aser seems to make entire classwise accuracy
difference curve well-behaved. As depicted
in Figure 4, not only does the debiased grey
curve avoid the characteristic 1.0-accuracy
difference spike between epochs 30 and 80,
it very nearly decreases monotonically after
leaving a 40-epoch freeze at initialization.



8

4.2 “Cost of Fairness”

Since the imposition of our ε-bias constraint
does not help fulfill an objective (it, in fact, ac-
tively hampers the training objective), we do
not expect the ε-tolerant debiaser to improve
overall accuracy performance.

Recall that Corbett-Davies et al found a
significant tradeoff between fairness and ac-
curacy; a recidivism model with conditional
statistical parity with respect to race intro-
duces risk by letting more potentially dan-
gerous criminals into the community, thus
creating a “cost of fairness” [4]. We similarly
calculate our own cost of fairness.

Figure 5: Both the vanilla and the debiased models
converge to the same accuracy around 70%.

We observe in Figure 5 that although the
debiased production model is initially slower
to train, it catches up fairly quickly. In fact,
due to sample variation between these two
trajectories, the debiased model actually con-
verges slightly faster. We therefore conclude
that the cost of fairness is negligible.

4.3 Liveness in Practice

The liveness condition predicts that the pro-
duction model will never be frozen indefi-
nitely, but does not preclude intolerably long
freezes.

Figure 6: The number of unique production models
throughout training.

Furthermore, the liveness property only
applies in the infinite-width limit. However,
we see our model never stays permanently
frozen in Figure 6, and the longest stretch
where no new models are being validated is
40 epochs.

5 Conclusion

We reasoned about safety-critical applications
of online models with high social-impact out-
puts and implemented the ε-tolerant online
debiaser, a shielding method with success-
ful empirical reduction of bias on the recidi-
vism dataset as well as theoretical guaran-
tees in both safety and liveness. Surprisingly,
the Corbett-Davies cost of fairness is negligi-
ble. We hope that this finding is particularly
useful to practitioners who must deploy live
models with active learning because this sub-
verts the efficient frontier between iteration
speed and safety.

We propose as next steps an augmenta-
tion of the debiasing algorithm that can ma-
nipulate gradient flow to “push” the running
model into good parametrizations without
violating the safety and liveness guarantees.
This presents challenges because doing so
introduces non-stationarity into the data dis-
tribution.
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7 Appendices

7.1 The COMPAS Algorithm

Figure 7

Figure 7 shows logistic analysis of the dataset broken down by race performed on Compas
by ProPublica. Here we see Black defendants who do not recidivate were almost twice as
likely to be classified as a higher risk compared to white defendants, as the false positive(FP)
rate is almost double for Black defendants.

7.2 Munging the Recidivism Dataset

Not all of the rows are useful for analysis, particularly due to missing data and reasonable
constraints on timeframe and offense.

• If the charge date of a defendants COMPAS scored crime was not within 30 days from
when the person was arrested, we assume that because of data quality reasons, that we
do not have the right offense.

• Ordinary traffic offenses – those with a c_charge_degree of ’O’ – will not result in Jail
time are removed.

• We filtered the underlying data from Broward county to include only those rows
representing people who had either recidivated in two years, or had at least two years
outside of a correctional facility.

• rows that were missing race were also filtered out to provide proper sectioning.

7.3 Dataset Schema & Sample Data

sex category
age int64
age_cat category
race category
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decile_score int64
priors_count int64
days_b_screening_arrest int64
c_charge_degree category
is_recid int64
score_text category
two_year_recid int64

sex age age_cat race decile_score priors_count c_charge_degree is_recid score_text
Male 69 Greater than 45 Other 1 0 F 0 Low
Male 34 25 - 45 Black 3 0 F 1 Low
Male 24 Less than 25 Black 4 4 F 1 Low
Male 44 25 - 45 Other 8 0 M 0 Low
Male 41 25 - 45 Caucasian 6 14 F 1 Medium

Table 1: Munged & truncated Broward County defendant history data set
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