
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Face To Face: An accuracy-time weighted
comparison of facial recognition methods and

practical differences

Hirsh Guha
Princeton University

hguha@princeton.edu

Josh Cohen
Princeton University

jmc16@princeton.edu

Abstract

Object detection, and in particular facial recognition, has been an active and im-
portant area of research since the 1960s. Although humans recognize faces with-
out effort or delay, recognition by a machine is still a non-trivial task. Facial
recognition has broad applicability in a variety of fields, including user authen-
tication, person identification, video surveillance, criminal investigations, data
privacy, gaming, and photography. In this paper, we study three different meth-
ods for categorizing faces from a variety of images: Haar Cascade Classifiers,
Histogram Oriented Gradients, and Convolutional Neural Networks. Using the
FDDB dataset, we will examine how each of these models performs on various
image types by generating bounding boxes, time, and accuracy statistics. We then
use this to analyze the situations that favor one model over another, and discuss
the trade-offs present in various scenarios. Lastly, we examine the use of prin-
cipal component analysis(PCA) and Support Vector Machines(SVM) in creating
generalizations and predictive capabilities beyond detection on a single image.

1 Introduction

In recent decades, tasks that have traditionally been performed by humans have increasingly been
automated and are now performed by computers. There is good reason for this - computers are
faster, more reliable, and can even outperform humans in certain tasks. Increasingly, researchers
have attempted to include object detection, including facial detection, in this category. Facial recog-
nition has wide ranging applications, including data privacy, user authentication, person identifi-
cation, video surveillance, criminal investigations, gaming, photography, and many more. Facial
recognition is still far from a solved problem, and we wanted to investigate and analyze several
currently-used methods in order to answer and explore the following four questions and topics: 1)
the various methods by which facial detection can be performed 2) how well those methods perform
on various metrics 3) in what scenarios certain methods are superior to others and 4) what analysis
can be done on recognized faces.

To this end, we will explore anc evaluate Haar Cascade Classifiers, Histogram Oriented Gradients,
and Convolutional Neural Networks in order to ascertain the strengths and weaknesses of these
methods and why those strengths and weaknesses matter in a real-world setting.

2 Related Work

We note that very little if any work has been done in comparing facial recognition methods against
each other, and the primary work that does by Mondal et al. analyzes various methods at a high
level, with no pipeline for automatic accuracy detection, and generalized results [11]. There is very

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

little precedent for a large scale implementation of specifically facial detection comparisons, which
is what we aim to provide.

The study of facial detection, or more broadly, object detection, has a long history, with papers on
the study of human factors in image interpretations dating back as early as 1961 [16]. The three
approaches we used are well-implemented in a real world setting, as we will discuss later, but they
are also well discussed in the theoretical sense in object-detection literature.

The Haar cascade classifier is one of the most common implementations of facial recognition in
use, mainly due to the readily pre-trained model available in the OpenCV package[8]. The model
has training weights for various objects and body parts, such as the face, the eyes, a smile, a full
body, and even a series of models for cat images [1]. This method has applications to more general
recognition problems, but these problems can be far more difficult, as Bailing Zhang [17] studied.
However, the ideas that will be used in this paper come from the paradigm-setting paper by Paul
Viola and Michael Jones in which they first described the method of rapid object detection using a
boosted cascade of simple features[15], though we will examine this further in Section 5.

Histogram Oriented Gradients(HoG) as a method is considered one of the faster object detection
methods and therefore is commonly used in surveillance technology[4, 12]. Pang et al. found a way
to use HoG in conjunction with Support Vector Machine algorithms to take what is one of the more
accurate methods, and increase the speed through feature reuse and sub-cell based interpolation to
efficiently compute the HOG features for each block [12].

Convolutional Neural Network (CNN) is a deep learning method which is well described by Albawi
et al as a mathematical linear operation between matrices with multiple layers; including a convolu-
tional layer, non-linearity layer, pooling layer and fully-connected layer [3]. This has use cases far
beyond facial detection, yet in some cases may be the most accurate in this application[14].

3 Dataset

Our first dataset comes from the Face Detection Data Set and Benchmark (FDDB)[7], a collection
of 5171 faces in 2845 images created by researchers at the University of Massachusetts - Amherst.
These images were taken between 2002 and 2003, and are quite varied in setting and in number
of faces. Additionally, they are labelled with (correct) face coordinates, making it relatively simple
to compare the results of our models with the true values without needing to manually check each
image.

For results via eigenvalues, we use the Labeled Faces in the Wild(LFW) dataset provided in scikit.
For seven of celebrities, we can ensure that we get at least 70 labeled images of each. These celebri-
ties include Ariel Sharon, Colin Powell, Donald Rumsfeld, George W Bush, Gerhard Schroeder,
Hugo Chavez, and Tony Blair. Using dozens of images of each of them will be useful in perform-
ing some of the more classic machine learning analysis that we have done in previous homework
assignments.

4 Methods

4.1 Models

We implemented the following three models of object detection: Haar Cascade Classifiers, His-
togram Oriented Gradients, and Convolutional Neural Networks. In our implementation, we used
two main python libraries: openCV, a library designed specifically for computer vision problems
and containing a number of trained model weights, and dlib, a C++ machine learning toolkit with
various high performance methods[1, 2]. Here we will describe how the three methods work:

Haar Cascade Classifer Object Detection using Haar feature-based cascade classifiers is an ef-
fective object detection method proposed by Paul Viola and Michael Jones in their paper, ”Rapid
Object Detection using a Boosted Cascade of Simple Features” [15] and that we will describe in
more depth in Section 5. A cascade function is trained from numerous positive and negative images.
It is then used to detect objects in other images.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Histogram Oriented Gradients The histogram of oriented gradients (HOG) is a feature descrip-
tor used in computer vision and image processing for object detection. The technique counts occur-
rences of gradient orientation in localized portions of an image. This method is similar to that of
edge orientation histograms, scale-invariant feature transform descriptors, and shape contexts, but
differs in that it is computed on a dense grid of uniformly spaced cells and uses overlapping local
contrast normalization for improved accuracy [6].

Convolutional Neural Networks In deep learning, a convolutional neural network(CNN) is a
class of deep neural networks, most commonly applied to analyzing visual imagery. They are also
known as shift invariant or space invariant artificial neural networks, based on the shared-weight
architecture of the convolution kernels that shift over input features and provide translation equivari-
ant responses. Our particular implementation via a trained Dlib model also implements Max-Margin
Object Detection (MMOD), as an optimization over any detection method. [9].

Eigenvalues We adapt the method described in scikit’s documentation on facial recognition ex-
ample using eigenfaces generated by Principal Component Analysis and correctly predicted using
Support Vector Machines [13]. We will break the images into a test set and training set, and use
PCA to break images into 150 components to extract 150 ”eigenfaces” and measure the accuracy of
predictions of these eigenfaces.

4.2 Evaluating the Models

The FDDB dataset comes with labels for each of the faces present in each image. However, making
this usable and automated was nontrivial. First, we had to parse the annotations, which were simply
given as a text file rather than a CSV file or JSON. Then, since the FDDB database gave bounding
ellipses, we converted these to bounding boxes simply using the center and axes. The given ellipses
were angled, yet we ignored the angles, both because all the angles were quite small and had little
impact on the results, and because the location of a face is not exact (For instance, does the bounding
box include the forehead, chin, and/or ears?). We were not aiming to reproduce the labels exactly
but rather to test which faces were recognized, so we allow for some approximation.

Specifically, in order to compare the bounding boxes generated by our models with the true values,
we did the following:

1. Find the closest predicted bounding box (comparing corners) to each true box, recording
the (Euclidean) distances.

2. Find the smallest distance among the above and consider that pair of boxes. If the distance
is < 50 pixels, remove these boxes from their respective sets, and count this as a correct
image. Otherwise, we are done: all remaining faces are false positives or negatives.

3. If we did not finish in Step 2, repeat the above until there are no more boxes in one of the
sets.

The idea with the above is that the bounding boxes fall into 3 categories: those correctly found (in
which there are true and predicted boxes close to each others), a false positive (a predicted bounding
box nowhere near a true one), and a false negative (a true bounding box nowhere near a predicted
one). Since the boxes are not exact, we want to know if there is a pair that is likely to be a match.
The true boxes each correspond to actual faces, so we want to see which (if any) of the generated
boxes most likely corresponds to that face. We give leeway of 50 pixels (about 1/8 of the height
of most images), since by manually looking at the outputted images, we found that to be a good
dividing line between correct and incorrect pairings. Then, we know that of the remaining boxes
(after step 3), all of the true boxes are false negatives (they had no corresponding predicted box),
and all the predicted boxes are false positives (there was no corresponding true box).

4.3 Metrics

Our metrics for situational comparison between the facial recognition models are accuracy and time.

Measuring time is very simple but very important in many applications of facial recognition. For
instance, if the HoG method was very slow on images with multiple faces, it would be a poor fit

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 2: Various common patterns for Haar shapes

for use in a security camera trying to continuously recognize faces in images with dozens of people.
Thus, we study and discuss the time taken by each method in various scenarios, as this information
must be part of any useful analysis.

We compute accuracy to determine whether our methods will correctly identify faces. However,
there are actually several pieces of information that we need for useful analysis. We need to know
which faces were correctly identified, which faces were missed (false negatives), and which objects
were incorrectly marked as faces (false positives). As described in the previous section, we can gen-
erate all of these metrics, since we use several heuristics to match the bounding boxes and determine
if the fit is accurate or not. We did manually examine many of the resulting images, and did not
find any misclassifications, which adds confidence to our approach and our 50px margin being an
acceptable threshhold.

5 One Model in-Depth: Haar Cascade Classifiers

A cascade of boosted classifiers working with Haar-like features is a special case of ensemble learn-
ing known as boosting. Cascade classifiers are trained both on a few hundred sample images that
contain the object we want to detect and on other images that do not contain those objects. In our
case, we trained the model on hundreds of images of faces (though more generally, the same meth-
ods apply to any objects, such as cats, cars, houses, etc). The algorithm we implemented is quite
popular due to being readily available with the OpenCV library in Python and allows for imple-
mentation of facial detection is very few lines of code. It is a method was discussed by Paul Viola
and Micheal Jones in what is known as the Viola–Jones object detection framework, which has the
following steps: [15]:

• Haar Feature Selection

• Create integral image

• Adaboost Training

• Cascading Classifiers

5.1 Haar Feature Selection

Figure 1: Haar features on a face, with additive
(white) and subtractive (black) pixels

There are some common features that we find
on most human faces, such as a dark eye re-
gion compared to upper-cheeks, or a bright
nose bridge region compared to the eyes. These
characteristics are called Haar Features. Figure
1 shows an example, the measuring the differ-
ence in intensity between the region of the eyes
and across the upper cheeks. The feature value
is computed by summing the pixel values in the
black area(the grayscale color) and subtracting
the pixels in the white area.

There are several types of rectangles that can be
applied for Haar Features extraction, shown in
Figure 2.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Then, we apply this rectangle as a convolutional
kernel over our whole image. In order to train

the best model, we apply all possible dimensions and positions of each kernel, but a simple 24*24
images would result in over 160000 features of a additive/subtractive pixels values, which is compu-
tationally intractable. Instead, once the good region has been identified by a rectangle, we compute
the rectangle features using the integral image principle, which speeds up the operations signifi-
cantly.

5.2 The Integral Image

The Integral Image is an intermediate representation which allows any rectangular sum to be com-
puted simply, using only four values. Suppose we want to determine the rectangle features at a given
pixel with coordinates (x,y). Then, the integral image of the pixel is the sum of the pixels above and
to the left of the given pixel.

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′)

Where ii(x, y) is the integral image and i(x, y) is the original image.

Computing the entire integral image can be done using a recurrence, thus requiring only a single
pass over the original image. Indeed, we can define the following pair of recurrences :

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y)

where s(x, y) is the cumulative row sum and and s(x1) = 0, ii(1, y) = 0 [15].

5.3 Adaboost Training

Given a set of labeled training images (positive or negative), Adaboost is used to select a small set
of features and train the classifier. Looking at our example of 160000 features, most are likely to be
quite irrelevant. The weak learning algorithm that the boosted model is built on is designed to select
the single rectangle feature which best splits the image. Now that the features have been selected,
we apply them on the set of training images using Adaboost classification, which combines a set
of weak classifiers to create an accurate ensemble model. As described in Paul Viola and Micheal
Jones’s Paper, this results in 6000 features instead of 160000, and an accuracy of 95% of faces
correct located and marked, and a false positive rate of 1 in 14084[15].

5.4 Cascading Classifiers

In our case, most of the image consists of irrelevant information (ie, background pixels that are
not faces). Therefore, it would be quite inefficient to give equal importance to every region of the
image, and we should mainly focus on regions that are most likely to contain relevant information.
Viola and Jones achieved this increased detection rate while reducing computation time by using
cascading classifiers.

The key idea is to reject regions that do not contain faces while identifying regions that do. Note
that, since we want to properly identify the face, we are very concerned with minimizing the false
negative rate: regions that contain a face but are marked as not containing one.

These classifiers are simple decision trees: if the first classifier is positive, we move on to the sec-
ond, and if the second classifier is positive, we move on to the third, and so on. Any negative result
at some point leads to a rejection of the region as potentially containing a face. The initial clas-
sifier eliminates most negative examples at a low computational cost, and the following classifiers
eliminate additional negative examples but require more computational effort. When training such
a model, the variables are the the number of classifier stages, the number of features in each stage,
and the threshold of each stage.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 3: Example of classifiers: labels (white), HOG (red), CNN (green), Cascade (blue)

Overall 1 Face in Image 2 Faces in Image >2 Faces in Image
Model Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec. Acc. Prec. Rec.
HOG .747 .987 .754 .940 .976 .963 .796 .993 .800 .566 .998 .567
Cascade .658 .884 .720 .783 .845 .914 .687 .892 .750 .533 .933 .554
CNN .783 .952 .815 .833 .904 .914 .869 .967 .895 .690 .993 .693

Table 1: Accuracy, Precision, and Recall based on number of faces in image

6 Expected Behaviour

In this project, we would like to be able to identify faces accurately using the various methods
described above as well as to be able to identify the main strengths, weaknesses, and differences of
each model. From our research in Section 2 on related work, we expect that HoG will be the fastest
algorithm, followed by Haar Cascade Classifier and finally CNNs. However, we also expect that
CNN should be the most accurate algorithm, with HoG and Haar Cascade Classifiers performing
roughly equal, and having trouble with finer details, such as small faces or lesser contrast in the
image. Finally, in order to understand facial recognition in the context of predicting labeled faces, we
expect PCA to be able to break down the faces into meaningful eigenvalues that will roughly show
simplified facial details, and from Precept 8, these demopoisitons will allow for data compression,
and better visualization of general facial construction [10].

7 Results

The above tables show the results of the classifiers on the FDDB dataset, broken down both by the
number of faces in the image as well as the true size of the face. Table 1 shows the overall accuracy,
precision, and recall for each classifier, as well as those statistics for faces in image with 1 face, 2
faces, and more than 2 faces. Table 2 shows the accuracy of each classifier on small (< 150 pixels)
and large (> 300 pixels) faces, where the size of a face is defined by the length of the diagonal in
the labelled bounding box. We also show the total time each classifier took on the entire dataset.
Finally, we show an example image in Figure 3. On this image, all models found 2 of the real faces,
all missed a small one, and the Cascade classifier found a false positive.

Accuracy - Small Accuracy - Large Time (s)
HOG 0.638 0.877 186
Cascade 0.603 0.774 107
CNN 0.721 0.671 13,673

Table 2: Accuracy on small and large images and total time taken

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Precision Recall F1-Score Support
Ariel Sharon 0.71 0.38 0.50 13
Colin Powell 0.80 0.87 0.83 60
Donald Rumsfeld 0.89 0.63 0.74 27
George Bush 0.83 0.98 0.90 146
Gerhard Shroeder 0.95 0.76 0.84 25
Hugo Chavez 1.00 0.53 0.70 15
Tony Blair 0.97 0.81 0.88 36

Table 3: The classification report of the predicted versus true labels for the LFW dataset trained via
SVM

To analyze faces using PCA and SVM by breaking the face images into eigen-
values, we take 1288 images, extract 1850 features from each, and extract 150
components via PCA. Those 150 decomposed faces are then used to train an
SVM model that is then used to create Table 3 via scikit’s classification report.

Figure 4: The first 12 eigenvalue compo-
nents from the LFW image dataset

8 Discussion

In contrast to what we predicted in Section 6 on Ex-
pected Behaviour, Table 2 shows that the cascade
classifier was the fastest, almost twice as fast than the
next fastest, the HoG method. As expected, the CNN
method was by far the slowest, taking almost 4 hours
compared to 2-3 minutes for the other methods.

Overall, we see that CNN is the most accurate in
general, yet this only gives a partial picture. HOG
consistently had far fewer false positives (seeing an
image where there is none) than the other 2 meth-
ods, and thus had a higher precision. Cascade classi-
fiers, on the other hand, consistently had higher lev-
els of false positives and false negatives (missing a
true face). Thus, in general, we see a speed-accuracy
tradeoff, with the fastest algorithm being the least ac-
curate (as well as having low precision and recall)
and the slowest being the most accurate.

However, we wanted to delve deeper into the strengths of weaknesses of each classifier, so we also
broke down the results by the number of faces in the image and by the size of individual faces
(Ideally, we would have liked to include additional characteristics, such as partially obscured faces,
angled faces, low-light, etc, but these features are not labelled on the dataset. We can calculate the
number and size of faces quite easily from the labelled bounding boxes). Table 1 shows that both
HOG and the Cascade classifier become significantly less accurate and find significantly more false
negatives as the number of faces increases (the number of false positives, on the other hand, actually
decreases). Interestingly, however, the CNN actually becomes more accurate with 2 faces in the
image, and is far better on images with at least 2 faces than the other two. In fact, CNN does quite
poorly with only 1 face relative to HOG, with lower accuracy, precision, and recall.

These results align with the data on small and large faces, presented in Table 2. While HOG and
the Cascade classifier perform much worse on small faces than large ones, CNN does the opposite.
These two features are not independent; we would expect images with many faces to have smaller
ones, and vice versa. Thus, this may offer a potential explanation for why CNN performs much
better on images with more faces - it is better on smaller faces. Naively, we would expect small
faces and images with more people to be more difficult, and unfortunately the black box nature of
CNNs makes it unclear why this case is different.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Thus, we see that various classifiers are best used in different situations. Cascade classifiers are
the best choice if speed is paramount (say, for real-time facial detection and in situations where
computation is limited). HOG is best in situations where there is only a single or large faces and
where avoiding false positives is very important. And CNNs are the best in cases where there are
many or small faces and time is not a limiting factor. Finally, we note that the accuracy was relatively
poor overall, with almost all accuracy rates under 90%, and only a few above 80%. It is clear that
there is still much work to be done in developing more accurate and more generally applicable
models.

Lastly, we examine the results of our efforts in breaking down a series of images into its eigenvalues,
and showing the top 12 of those in Figure 4. In Table 3, we show the precision, recall, f1-scores, and
support as provided by the scikit classification report given the top 7 labels, along with the predicted
values and true values for each. We note that these two aspects of facial detection can be used to
augment each other. For instance, a common use case of facial detection is to find criminals by
detecting facts based on mugshot or other images. This allows us create a more specified model -
from the general model that was trained on faces, we could retrain the same model with a specific
person’s face - as we essentially can create a dataset via our facial detection methods. Then using
that detected face, we would want to then use methods such as SVM to search through hundreds
of hours of surveillance footage from different cameras in order to find a match on the suspect’s
face. However, many cameras produce images of varying quality, and the suspect may be wearing
hairstyles, or facial fair, or a number of other variables that would make it hard for the models to
detect. Using a method like PCA for dimension reduction can be useful for image compression, but
the outputted eigenvalues are useful for constructing various predictions on how the suspect may
have changed their look [10].

9 Conclusions

We were able to successfully implement three different facial recognition methods - Haar Cascade
Classification, Histogram Oriented Gradients, and Convolutional Neural Networks - in a way that
allowed easy and intuitive comparison between them on the same image set, based on a configuration
file. In addition to simply being able to show a series of methods that can accurately detect faces
on any common image, we were able to analyze situations where one method might be superior to
another, as discussed in Section 8. Finally, we show eigenvalue decomposition via PCA and SVM on
another image set in order to extend our project to its possible uses. Thus, we have shown analysis
of a complete pipeline that begins with a single image, predicts the location of the face, and then can
use that face to then locate other instances of that same face.

10 Future Work

First, we could extend this work to incorporate other models and forms of facial detection to get a
more complete view of all the current methods available. This would help us to determine the best
models for various types of images. For instance, we could investigate creating a You Only Look
Once face detector or Single Shot Detector[5].

Second, delving deeper into specific features of images that make certain classifiers more or less
effective would be useful. For instance, is there are difference when faces are in shadow or partially
turned away from the camera? With a sufficiently-labelled dataset, this would help expand our
discussion of the strengths and weaknesses of various classifiers.

Finally, one area of computer science that intersects with philosophy is the ethics of facial recog-
nition. We recognize when discussing the relevance of facial recognition that it is not all positive.
Facial recognition has become somewhat of a controversial topic in the mainstream as of late. Be-
cause of its use in various protests, or as a governmental tracking tool, the public is understandably
wary of advancements in the field that present privacy concerns. Deep fakes are another area of
worry, wherein a person’s face can be grafted onto another person’s body, or a person can be made
to look as though they are doing something incriminating through entirely computer generated im-
agery, and it is these same methods that we explored that enable these malicious behaviours. An
entire line of research can be done just into these ethical concerns, and what steps can be taken to
minimize adversarial behaviour.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References

[1] Opencv python library documentation. OpenCV.
[2] dlib C Library, Mar 2021.
[3] Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional

neural network. In 2017 International Conference on Engineering and Technology (ICET),
pages 1–6. Ieee, 2017.

[4] Muhammad Awais, Muhammad Javed Iqbal, Iftikhar Ahmad, Madini O Alassafi, Rayed Al-
ghamdi, Mohammad Basheri, and Muhammad Waqas. Real-time surveillance through face
recognition using hog and feedforward neural networks. IEEE Access, 7:121236–121244,
2019.

[5] Ambika Choudhury. Top 8 algorithms for object detection one must know, Feb 2021.
[6] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In 2005

IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
volume 1, pages 886–893. Ieee, 2005.

[7] Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in unconstrained
settings. Technical Report UM-CS-2010-009, University of Massachusetts, Amherst, 2010.

[8] Abid K. Face detection using haar cascades¶, 2013.
[9] Davis E King. Max-margin object detection. arXiv preprint arXiv:1502.00046, 2015.

[10] Sulin Liu and Xioyan Li. Precept 8: Dimension reduction: Pca, svd and nmf. Precept 8,
page 5, March 2021.

[11] Sudipto Kumar Mondal, Indraneel Mukhopadhyay, and Supreme Dutta. Review and com-
parison of face detection techniques. In Mohuya Chakraborty, Satyajit Chakrabarti, and
Valentina E. Balas, editors, Proceedings of International Ethical Hacking Conference 2019,
pages 3–14, Singapore, 2020. Springer Singapore.

[12] Yanwei Pang, Yuan Yuan, Xuelong Li, and Jing Pan. Efficient hog human detection. Signal
Processing, 91(4):773–781, 2011.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[14] M Sivaram, V Porkodi, Amin Salih Mohammed, and V Manikandan. Detection of accurate
facial detection using hybrid deep convolutional recurrent neural network. ICTACT Journal on
Soft Computing, 9(2), 2019.

[15] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE computer society conference on computer vision
and pattern recognition. CVPR 2001, volume 1, pages I–I. IEEE, 2001.

[16] Joseph Zeidner. Human factors studies in image interpretation: vertical and oblique photos,
volume 120. US Army Personnel Research Office, 1961.

[17] Bailing Zhang. Reliable classification of vehicle types based on cascade classifier ensembles.
IEEE Transactions on intelligent transportation systems, 14(1):322–332, 2012.

11 Appendix: Roles and Responsibilities

11.1 Hirsh Guha

Hirsh handled the initial set up of the three machine learning models, Haar Cascade Classifiers,
Histogram Oriented Gradients, and Convolutional Neural Networks as well as a configuration file
that allowed us to easily manipulate the image data passed in, and the prepossessing. Hirsh also
handled the set up of the PCA and SVM models that would result in the classification data from
Table 3 and the eigenfaces in Figure 4. Lastly, Hirsh was responsible for completing the related
work literature review, and diving deep into Viola et al’s paper on cascading classifier in order to
discuss one-model in depth.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

11.2 Josh Cohen

Josh found the FDDB dataset, which met our requirements of being large enough, having varied
types of images, and having labels to identify regions as faces. He then did the preprocessing of
the data, such as converting the bounding ellipses into boxes, and wrote the parts of the code that
enabled automatic accuracy, precision, and recall calculations based on the various image features
we identified (number of faces and size of faces). Josh used the algorithms and infrastructure that
Hirsh set up to run the models on all the data (which took about 4 hours each time) and calculate
the relevant results and statistics given in this report, writing the associated information about these
results and the relevant discussion.

All other relevant sections of this paper, including the poster, proposal, ideas, and code writing were
worked on by both Hirsh and Josh together. We feel as though we both contributed equally to this
project.

10


	Introduction
	Related Work
	Dataset
	Methods
	Models
	Evaluating the Models
	Metrics

	One Model in-Depth: Haar Cascade Classifiers
	Haar Feature Selection
	The Integral Image
	Adaboost Training
	Cascading Classifiers

	Expected Behaviour
	Results
	Discussion
	Conclusions
	Future Work
	Appendix: Roles and Responsibilities
	Hirsh Guha
	Josh Cohen


