
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Classifying Twitter Sentiments from the Black Lives
Matter Movement

Hirsh Guha
Princeton University

hguha@princeton.edu

Josh Cohen
Princeton University

jmc16@princeton.edu

Abstract

We classify tweets related to the Black Lives Matter movement as positive or neg-
ative in order to ascertain an understanding of various classifiers. After cleaning
the data, we train 5 different classifiers, each using both a bag-of-words represen-
tation and a tf-idf score. We use a variety of metrics to evaluate the performance of
the classifiers, including accuracy, precision, recall, ROC AUC scores, and cross-
validation. We found that the classifiers generally had better performance with
tf-idf scores, and that Support Vector Machines, Naive Bayes, and Logistic Re-
gression tended to be the most accurate by a variety of metrics, while Random
Forests and K-Nearest Neighbors performed poorly.

1 Introduction

In a world where opinions spread like wildfire on social media, sentiment analysis can be a powerful
tool to quickly gain real-time information about people’s opinions on brands, policies, or social
movements. This social media data is unfiltered and can be widely distributed, allowing quicker
and possibly more accurate information than traditional polls or other opinion-tracking measures.
In summer 2020, the Black Lives Matter movement provoked a range of reactions on social media.
We would like to classify those reactions into positive and negative categories in order to better
gauge sentiment on this or similar social movements in the future. To do so, we will examine
the performance of a variety of classifiers, both generative and descriptive, on a dataset containing
roughly 8500 tweets. We analyze the results with a variety of metrics in order to effectively compare
the classifiers with one another for this task.

2 Related Work

Kouloumpis et al. investigated the utility of existing lexical resources and features that capture
information about the particular style of speaking popular in microblogging [2]. Since the advent of
Twitter has born a sublanguage unto itself, they seek to analyze whether there is useful information
that can be parsed from the vernacular. While their methods are intrinsically different than ours
(They use AdaBoost), and their dataset is not particularly focused on a subset of tweets, our goals
in creating predictive results for twitter sentiments are very similar.

2.1 Expected Behaviour

The tweets in the dataset have several important features that will affect the performances of the
chosen classifiers, and which allow us to make some predictions. First, there are roughly 4000
positive tweets compared with roughly 1000 negative tweets in the training data. This means that
approaches such as k-nearest neighbors may not perform as well, since there are many more potential
positive neighbors than negative ones. Secondly, the language used in the tweets is often very
similar. In particular, many positive and negative tweets use the words “black”, “lives”, and “matter”,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

and contain mentions of cops or police. On first glance, it seems like it may be harder to see a
distinction in many of the tweets as opposed to, say, reviews, where certain words like “love”, or
“disappointed” are highly predictive.
We would expect this similarity between many of the tweets to have several consequences. First,
the data may not be linearly separable, which could cause Naive Bayes and logistic regression to
perform poorly. Additionally, if the datapoints are relatively close to another and there is not as
much clustering, k-nearest neighbors may again perform relatively poorly. Finally, since there are
some words that seem to be very discriminatory between the categories (for instance #alllivesmatter
appears almost exclusively in negative tweets), we may be able to improve performance by using
tf-idf scores to take frequency into account.

2.2 Dataset

The dataset consists of 6747 training tweets and 1688 test tweets, all labeled as “positive”, “nega-
tive”, or (in the training data) “neither”.

2.2.1 Feature Selection

In order to clean the data and build our models, we use a config that allows us to toggle each of the
following steps:

1. Remove words containing numbers (these words generally appear only once and tend to
skew the most predictive features).

2. Turn emojis into traditional ASCII characters using the python emoji package.
3. Remove the word “RT”, URLs, and user mentions from the text of the tweet.
4. Remove capitalization and punctuation from each tweet.
5. Use the NLTK python package to remove stopwords (ie, “a”, “the”, etc) and to lemmatize

the words, or to decompose them into their base words (ie, talked → talk). We need to
remove “all” from the list of stopwords, since that word is particularly important for this
project.

6. Finally, we remove the tweets labeled “neither” in order to more clearly focus on the dif-
ference between positive and negative tweets.

We can then use scikit’s χ2 feature selection tool to choose various values of the k best features with
which to use in the training and test data. It requires some testing to find a value of k that suitably
increases accuracy and improves speed without losing much needed information. We settled on
k = 500, which is roughly 4% of the total features.

Finally, we used a Vectorizer to turn the data into a sparse matrix. We used both a CountVectorizer
(in which aij is the number of times that word j appears in tweet i) as well as a TfidfVectorizer
(which weights words by how frequently they appear in a category and inversely by how common
they are in all categories). In each case, we remove the bottom 0.1% of words by each metric, as
we found that without this step, the most predictive features tended to be words that appeared in a
single tweet and thus had a very high correlation with one category.

3 Methods

We selected 5 classifiers from the scikit-learn library in order to compare across models [5]. The
classifiers were as follows:

• Multinomial Naive Bayes (NB) - Simple, fast, and generative. It is a useful benchmark to
see if more sophisticated and complex models would perform significantly better.

• Logistic Regression(LR) - Simple, fast, and discriminative. In theory, it should have a
smaller error than Naive Bayes with a large enough sample size[3]. This serves as a useful
benchmark and a way to see if the independence assumptions of the model hold true.

• K-Nearest Neighbors(KN) - This classifier requires no assumptions about the data. We
want to see if our prediction that this classifier would fare poorly due to the structure of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

the data holds. It needs to be run multiple times to find a good value for k, the number of
neighbors to match.

• Random Forest(RF) - This classifier makes no assumptions of the input data and generally
performs better than logistic regression about 70% of the time[1]. We wanted to see if this
result holds true, particularly if the data did not turn out to be linearly separable or have
independence between features.

• Support Vector Machines(SVC) - This classifier attempts to find a separating hyperplane
that maximizes the separation. SVM has been found to outperform Naive Bayes on
sentiment-analysis related tasks[4]. We wanted to test this result as well.

We have 2 sets of results for each of these models: using a bag-of-words approach and using tf-idf
scores. All the models are identical in each case, except that we changed the α smoothing parameter
for naive Bayes from 1 to 0.1 for tf-idf so that it would not overwhelm the data.

3.1 One Model In Depth - K-Nearest Neighbors

K-Nearest Neighbors is a very simple classifier based around the idea of classifying points in some
space based on their distance to the points in the training set [6]. To be more precise, suppose
that our data comes from some space S (for instance, in this project, we can think of this space as
R|vocab|). Additionally, we have some distance function d : S → S → R.

Given a feature vector D = {(x1, zi), (x2, z2), ..., (xn, zn)}, where the xi ∈ S are the samples in
the training data and the zi ∈ {0, 1} are the corresponding classifications, we do the following:

• For a given sample x∗, find the K samples from x1, .., xn such that d(xi, x∗) is minimized.
• Let Z = {z1, ..., zk} be the labels of the xi’s found. Assign ẑ∗ to be the majority class in
Z.

This classifier requires a value for K and a distance function d. A good choice of K may depend on
the size and the structure of the data, while a choice for d may depend both on the structure of the
data and on the space itself. Common choices include Manhattan distance, Euclidean distance, or
the generalization: Minkowski distance, each of which are given, respectively, below:

dMan(x, y) =

n∑
i=1

|xi − yi| dE(x, y) =

√√√√ n∑
i=1

(xi − yi)2 dMin(x, y) =

(
n∑

i=1

|xi − yi|p
) 1

p

The implementation in scikit-learn, which we used, uses Minkowski distance by default, but also by
default chooses p = 2, making it equivalent to Euclidean distance.

As a classifier, K-Nearest Neighbors has a number of notable features compared with its peers. First,
it requires no training, since it simply compares the input to the training data points. It also makes
no assumptions about the structure of the data or about the independence of various features. It can
easily be extended to handle multiple classifications (by choosing a plurality instead of a majority
in Step 2), and it is kernalizable - ie, the data can be first mapped to a higher dimensional space by
a kernel function κ, and then we can run K-Nearest Neighbors on the higher dimensional space. Its
(testing) runtime is O(np) where n is the number of samples and p is the number of features.

However, the simplicity of this approach leads to some drawbacks. First, a relatively small number of
outliers or skewed data can cause problems, as they may play an outsized role in the distances chosen
in step 1 (particularly with small k). In general, choosing an appropriate k and distance function d
may not be easy, and the wrong distance function d could easily lead to irrelevant features playing a
massive role. For example, if we have features x ∈ [0, 1] and y ∈ [0, 100], using Euclidean distance
would cause x to be almost irrelevant in the calculation. Additionally, if the data is very skewed,
more distances may come from one of the classes purely through sheer numbers (consider a training
set skewed 90-10, for instance). This can be resolved by weighting the distances by the prevalence
of the classes. More generally, the model does not give probabilities and instead just outputs a class,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Name Accuracy Precision Recall CV Accuracy CV Stddev ROC AUC Score Time (s)
NB 0.836 0.884 0.919 0.840 0.023 0.840 0.3
LR 0.841 0.855 0.965 0.848 0.018 0.837 3.3

KNN (k = 50) 0.815 0.826 0.972 0.821 0.020 0.725 4.5
RF 0.826 0.857 0.924 0.825 0.023 0.775 27.5

SVC 0.839 0.846 0.973 0.847 0.019 0.838 6.9

Table 1: Results with CountVectorizer

Name Accuracy Precision Recall CV Accuracy CV Stddev ROC AUC Score Time
NB 0.829 0.858 0.988 0.843 0.014 0.863 0.1
LR 0.835 0.861 0.978 0.845 0.007 0.855 2.2

KNN (k = 50) 0.817 0.835 0.996 0.822 0.002 0.754 3.6
RF 0.827 0.868 0.933 0.826 0.025 0.795 33.2

SVC 0.844 0.877 0.962 0.851 0.018 0.860 1.6

Table 2: Results with TfidfVectorizer

which may mask significant uncertainty and provides less useful information. Thus, K-Nearest
Neighbors can best be classified as a simple, general-purpose approach that can be effective with
well-chosen k and d values, but does require some care in these choices.

4 Extensions

Figure 1: ROC Curves for Bag-of-Words

In addition to training and comparing 5 classifiers,
we chose to extend the project in two different rec-
ommended ways to further our exploration of twit-
ter sentimental analysis. First, we used a variety
of feature selection methods, including χ2 feature
selection and pruning many words that were much
less likely to be predictive (for instance, those with
numbers). Second, we extend the given vectoriza-
tion methods to compare a traditional CountVector-
izer against a TF-IDF Vectorizer, and show results
for both, enabling comparison among both the clas-
sifiers and the data representation.

5 Results

Tables 1 and 2 summarize several metrics for each
vectorizer and classifier. Additionally, we plotted the
Receiver Operator Characteristic (ROC) curves for each method. This gives a visual method of
determining how effective each model is at distinguishing true positives from false positives at each
probability threshold. These figures are shown on the next two pages. Note that we partitioned the
data into testing and training samples randomly; since there were far fewer negative tweets in the
dataset, there are few false negatives, so some of the recall values are quite high. Finally, Table 3
shows the five most predictive words for each category for the Naive Bayes model (scikit-learn does
not provide this capability for all models, and Naive Bayes performed well in many of the above
metrics).

6 Discussion

The above tables show that many classifiers improved in precision, recall, CV accuracy, CV stddev,
and AUC score when using tf-idf data rather than bag-of-words. This is unsurprising, as we would
expect that the relative frequency of words in each category plays a large role in prediction. As
noted in Section 2, some very common words may be less predictive (indeed, Table 3 does not list

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Negative (count) Positive (count) Negative (tf-idf) Positive (tf-idf)
answer antoniomartin break another

everyone animal anonymous anger
hope decision everyone decide
ally activist berniesanders act
bill destroy ca deserve

Table 3: Most Predictive Words with Naive Bayes

some expected words such as “#blacklivesmatter”, likely because they are used by both positive
and negative tweets). Our results also show the importance of cross-validation. The CV accuracy
was usually better than the accuracy over the whole dataset, which illustrates that we may have
been “unlucky” with the whole dataset, and more trials on different data would increase accuracy.

Figure 2: ROC Curves for TF-IDF

We found significant differences in accuracy and
ROC AUC score for the chosen classifiers. NB, LR,
and SVM were very close in performance, while RF
and KNN were less accurate. On the other hand,
RF was comparable to the above classifiers in preci-
sion, yet less accurate and with a significantly lower
recall. In most of these metrics, there was no signif-
icant relative change between bag-of-words and tf-
idf, as the same models did the same amount better
in each case. This may suggest that the models’ per-
formance was based much more on the underlying
structure of the dataset relative to how such structure
compared with the model assumptions, rather than
the word frequencies or counts. However, Naive
Bayes had the best AUC score, SVM and LR had
higher accuracies, and the results for precision and
recall were split, suggesting that the best choice of classifier heavily depends on which metrics are
being optimized. We note that the accuracy for all the models, save RF, increased with χ2 feature
selection (we do not show the original data due to space constraints). This may be because RF is
better at finding discriminating features in the data even among features with dependencies. Lastly,
we note that the top three models were about 84%-85% accurate on the cross-validated data, and
none of these models were able to dramatically outperform the others. This may speak to the dif-
ficulty of classifying tweets that often use similar language, and may require significant context in
order to interpret them effectively.

7 Conclusions & Future Work

We analyzed roughly 8500 tweets about the Black Lives Matter movement to determine which
classifiers would perform best in determining if tweets expressed positive or negative sentiment.
We performed trials using a both bag-of-words approach and a tf-idf approach. As predicted,
using tf-idf scores words generally improved performance, but there were not huge differences. In
general, Support Vector Machines, Naive Bayes, and Logistic Regression performed the best, while
Naive Bayes and K-Nearest Neighbors were the least accurate. The top models achieved about
84%-85% accuracy in cross-validation.

There are two main directions in which to extend this work. First, we can use more so-
phisticated or specialized models rather than the general-purpose models implemented in the
scikit-learn library to determine if the ≈ 85% accuracy can be improved or if this is intrinsic to the
data. Second, we would extend this analysis to datasets of other tweets to determine if the features
of this dataset are unique to the discourse around the polarizing Black Lives Matter movement or if
this sentiment analysis is similar to other applications.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

References

[1] Raphael Couronné, Philipp Probst, and Anne-Laure Boulesteix. Random forest versus logistic
regression: A large-scale benchmark experiment. BMC Bioinformatics, 19, 07 2018.

[2] Efthymios Kouloumpis, Theresa Wilson, and Johanna Moore. Twitter sentiment analysis: The
good the bad and the omg! Proceedings of the International AAAI Conference on Web and
Social Media, 5(1), Jul. 2011.

[3] Andrew Y. Ng and Michael I. Jordan. On discriminative vs. generative classifiers: A comparison
of logistic regression and naive bayes. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, NIPS’01, page 841–848,
Cambridge, MA, USA, 2001. MIT Press.

[4] Bo Pang, Lillian Lee, and Shivakumar Vaithyanathan. Thumbs up? sentiment classification
using machine learning techniques. In Proceedings of the ACL-02 Conference on Empirical
Methods in Natural Language Processing - Volume 10, EMNLP ’02, page 79–86, USA, 2002.
Association for Computational Linguistics.

[5] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-
tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-
rot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

[6] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

6

	Introduction
	Related Work
	Expected Behaviour
	Dataset
	Feature Selection

	Methods
	One Model In Depth - K-Nearest Neighbors

	Extensions
	Results
	Discussion
	Conclusions & Future Work

